Curiosity rover discovers key water indicator on Mars

NASA has reported that its Curiosity rover has made another significant discovery on Mars.

Curiosity has drilled into a rock that contains clay minerals – an indication of formation in, or substantial alteration by, neutral water.

Scientists say the find is one more step towards showing conditions on Mars in the distant past could have supported life.

Many rocks studied previously were probably deposited in acidic water.

While this would not have precluded the possibility of micro-organisms taking hold on Mars, it would have been more challenging, scientists believe.

Identifying clays shows there were at least some locations on the planet billions of years ago where environments would have been much more favorable.

“We have found a habitable environment that is so benign and supportive of life that probably if this water was around and you had been there, you would have been able to drink it,” said John Grotzinger, Curiosity’s project scientist.

Curiosity rover drilled a powdered sample from a mudstone at its exploration site in Gale Crater, a deep impact bowl on Mars’ equator.

This was delivered to the two big onboard laboratories, Sam and Chemin, for analysis.

The rock sample was found to contain 20-30% smectite – a particular group of clay minerals.

Their high abundance and the relative lack of salt are strongly suggestive of a fresh-water environment for the mudstone’s formation.

The presence of calcium sulphates, rather than the magnesium or iron sulphates seen in previous rock analyses at other locations on the planet, adds to the evidence that the sampled rock in Gale was deposited in a neutral to mildly alkaline pH environment.

Mars Curiosity rover has drilled into a rock that contains clay minerals, an indication of formation in, or substantial alteration by, neutral water

Scientists think Curiosity probably drilled into an ancient lakebed.

The analysis also identified sulphur, nitrogen, hydrogen, oxygen, phosphorus and carbon – some of the key chemical elements for life.

Additionally, it found compounds in a range of oxidized states, meaning there were electrons moving through the environment. Those could have been co-opted as an energy source by simple life-forms, if they ever existed in Gale.

“What we’ve learned in the last 20 years of modern microbiology is that very primitive organisms – they can derive energy just by feeding on rocks,” explained Prof. John Grotzinger.

“Just like on [a] battery – you hook up the wires and it goes to a lightbulb and the lightbulb turns on. That’s kind of what a micro-organism would have done in this environment, if life had ever evolved on Mars and it was present here.”

Curiosity rover is assembling quite a catalogue of water evidence in the crater.

Already, it has seen the remains of an ancient riverbed system, where water once flowed perhaps a metre deep and quite vigorously.

The picture that seems to be emerging is one where sediments were transported downhill from the eroding crater rim into a network of streams that then flowed into the lake environment represented by the mudstone.

Curiosity is currently working in a small depression known as Yellowknife Bay, about half a kilometre from the location where it touched down last August.

NASA’s original mission plan was to head towards the big mountain that dominates the centre of Gale Crater, but the fascinating science at Yellowknife Bay has delayed this journey somewhat.

In recent days, operations have been slowed by a software glitch, requiring the vehicle to be run off its reserve computer.

There is also the imminent issue of solar conjunction, which will see Mars move behind the Sun as viewed from Earth, blocking communications.

All this means that Curiosity will be at Yellowknife Bay for a while yet.

“Basically, we can’t talk to the rover and the rover [can’t] talk to us for most of the month of April,” said Michael Meyer, the lead scientist on NASA’s Mars exploration programme.

“We’ll do some more science activities though the end of this month, [provided] the engineers confirm it’s safe for us to do those operations. But we will not do a second drill hole until after solar conjunction.”

When the rover does finally get to the mountain, known as Mount Sharp, the expectation, based on satellite imagery, is that it will again find clay minerals.

This will enable the robot to compare and contrast past environments.

The US space agency’s Opportunity rover, which continues to work nine years on from its landing, is also believed to be sitting on top of clay-bearing rocks at its exploration site far to the west of Gale. Opportunity, however, does not have Curiosity’s capability to assess those rocks.

IPZ23Vdc6EQ
James J. Williams

James is a professor in Science. His writing skills brought him to BelleNews. He enjoys writing articles for the Science and Technology category. James often finds himself reading about the latest gadgets as the topic is very appealing to him. He likes reading and listening to classical music.

Recent Posts

House Panel Votes to Release Matt Gaetz Ethics Report

The US House Ethics Committee has voted to release its report on former Republican Representative…

4 days ago

ABC News to Pay $15M to Settle Trump Defamation Suit

ABC News has agreed to pay $15 million to President-elect Donald Trump to settle a…

1 week ago

South Korea’s Parliament Impeaches President Yoon Suk Yeol Following Martial Law Scandal

South Korea’s parliament has voted to impeach President Yoon Suk Yeol over his failed attempt…

1 week ago

Syria: Israeli War Planes Carry Out More Than 100 Air Strikes

Israeli war planes have carried out more than 100 air strikes in Syria on December…

2 weeks ago

Donald Trump Threatens 100% Tariff on BRICS Nations

President-elect Donald Trump has threatened to impose 100% tariffs on the BRICS countries if they…

3 weeks ago

Syria Coup: Rebels Take Control of Aleppo

Syrian troops have withdrawn from the city of Aleppo following an offensive by rebels opposed…

3 weeks ago