Categories: Science & Technology

Most realistic robot legs developed by University of Arizona

The most biologically-accurate robotic legs yet has been developed by US experts.

Writing in the Journal of Neural Engineering, US experts said the work could help understanding of how babies learn to walk – and spinal-injury treatment.

They created a version of the message system that generates the rhythmic muscle signals that control walking.

The team, from the University of Arizona, were able to replicate the central pattern generator (CPG) – a nerve cell (neuronal) network in the lumbar region of the spinal cord that generates rhythmic muscle signals.

The most biologically-accurate robotic legs yet has been developed by US experts

The CPG produces, and then controls, these signals by gathering information from different parts of the body involved in walking, responding to the environment.

This is what allows people to walk without thinking about it.

The simplest form of a CPG is called a half-centre, which consists of just two neurons that fire signals alternatively, producing a rhythm, as well as sensors that deliver information, such as when a leg meets a surface, back to the half-centre.

The University of Arizona team suggests babies start off with this simplistic set-up – and then over time develop a more complex walking pattern.

They say this could explain why babies put onto a treadmill have been seen to take steps – even before they have learnt to walk.

Writing in the journal, the team says: “This robot represents a complete physical, or <<neurorobotic>> model of the system, demonstrating the usefulness of this type of robotics research for investigating the neuropsychological processes underlying walking in humans and animals.”

Dr. Theresa Klein, who worked on the study, said: “Interestingly, we were able to produce a walking gait, without balance, which mimicked human walking with only a simple half-centre controlling the hips and a set of reflex responses controlling the lower limb.

“This underlying network may also form the core of the CPG and may explain how people with spinal cord injuries can regain walking ability if properly stimulated in the months after the injury.”

 

James J. Williams

James is a professor in Science. His writing skills brought him to BelleNews. He enjoys writing articles for the Science and Technology category. James often finds himself reading about the latest gadgets as the topic is very appealing to him. He likes reading and listening to classical music.

Recent Posts

House Panel Votes to Release Matt Gaetz Ethics Report

The US House Ethics Committee has voted to release its report on former Republican Representative…

4 days ago

ABC News to Pay $15M to Settle Trump Defamation Suit

ABC News has agreed to pay $15 million to President-elect Donald Trump to settle a…

1 week ago

South Korea’s Parliament Impeaches President Yoon Suk Yeol Following Martial Law Scandal

South Korea’s parliament has voted to impeach President Yoon Suk Yeol over his failed attempt…

1 week ago

Syria: Israeli War Planes Carry Out More Than 100 Air Strikes

Israeli war planes have carried out more than 100 air strikes in Syria on December…

2 weeks ago

Donald Trump Threatens 100% Tariff on BRICS Nations

President-elect Donald Trump has threatened to impose 100% tariffs on the BRICS countries if they…

3 weeks ago

Syria Coup: Rebels Take Control of Aleppo

Syrian troops have withdrawn from the city of Aleppo following an offensive by rebels opposed…

3 weeks ago