NOTT-202 metal-organic framework can selectively soak up CO2 from the atmosphere

British researchers have developed a porous material that can preferentially soak up CO2 from the atmosphere.

NOTT-202 is a “metal-organic framework” that works like a sponge, absorbing a number of gases at high pressures.

But as the pressure is reduced, CO2 is retained as other gases are released.

The development, reported in Nature Materials, holds promise for carbon capture and storage, or even for removing CO2 from the exhaust gases of power plants and factories.

Metal-organic frameworks have been considered promising structures to trap gases for a number of years. They are so named because they comprise atoms of a metallic element at their core, surrounded by scaffolds of longer, carbon-containing chains.

These complex molecules can be made to join together in frameworks that leave gaps suitable for capturing gases.

NOTT-202 is a "metal-organic framework" that works like a sponge, absorbing a number of gases at high pressures

However, until now, such frameworks have been good primarily at gathering any gas passing through them; those that were selective for CO2 have proven to have a low capacity for storing the gas.

“Increasing the selectivity for CO2 in the presence of gaseous mixtures represents a major challenge if these systems are to find practical applications under dynamic conditions,” the authors wrote.

The research started at the universities of Nottingham and Newcastle, where scientists discovered a chemical system that seemed to solve this problem of selectively storing a significant amount of CO2.

But to be sure of just what they had, they collaborated with a team at the Diamond Light Source in Oxfordshire and the Science and Technology Facilities Council’s Daresbury Laboratory to get a microscopic look at what they had created.

Using X-ray diffraction and detailed computer models, the researchers found that NOTT-202 is made up of two different frameworks that slot together incompletely, leaving “nanopore” gaps particularly suited to gathering up CO2.

This two-part structure, the researchers claim, is an entirely new class of porous material.

As such, research into just how similarly paired frameworks can be created may help researchers find a range of materials suited to soaking up specific gases.

 

James J. Williams

James is a professor in Science. His writing skills brought him to BelleNews. He enjoys writing articles for the Science and Technology category. James often finds himself reading about the latest gadgets as the topic is very appealing to him. He likes reading and listening to classical music.

Recent Posts

Donald Trump and Elon Musk Celebrate Election Victory at UFC 309

Image source: Wikimedia Commons President-elect Donald Trump celebrated his election victory at the Ultimate Fighting…

5 days ago

White House 2024: Donald Trump Wins, Kamala Harris Calls Him to Concede Election

Millions of voters across the US chose to return Donald Trump to the White House…

2 weeks ago

Who Won? Donald Trump Declares Victory as He Addresses Jubilant Supporters in Florida

Donald Trump declares victory in the US election as he addresses jubilant supporters in Florida.…

2 weeks ago

Stocks Soaring as Donald Trump Closes in on US Victory

Stocks around the world are rising as Donald Trump appears to be on the cusp…

2 weeks ago

Who Won? Kamala Harris Cancels Election Night Party as Path to Victory Narrows

Donald Trump has won Pennsylvania, North Carolina and Georgia and taken a lead over Kamala…

2 weeks ago

Quincy Jones Dead at 91

Quincy Jones, the celebrated musician and producer who worked with Michael Jackson, Frank Sinatra, Ray…

2 weeks ago