Categories: Science & Technology

Graphene can be used to study liquids at higher resolution with high-power microscopes

A new report in Science journal gives details on how carbon-based material graphene can help scientists study liquids more clearly with high-power microscopes.

Graphene can form a clear “window” to see liquids at higher resolution than was previously possible using transmission electron microscopes.

Liquids had been difficult to view at the same resolution as solids because these microscopes require the liquids to be encapsulated by some material.

Traditionally, silicon nitride or silicon oxide capsules, or liquid cells, have been used. But these are generally too thick to see through clearly.

Now, Jong Min Yuk at the University of California, Berkeley, and colleagues have shown that pockets created by sheets of graphene can be used to study liquids at clear, atomic, resolution using transmission electron microscopes (TEMs).

Graphene can form a clear window to see liquids at higher resolution than was previously possible using transmission electron microscopes

The researchers used their new graphene-based liquid cell to study the formation of platinum nanocrystals in solution.

With this technique, the team of scientists was able to observe new and unexpected stages of nanocrystal growth as it happened.

They noted how the crystals selectively coalesced and modified their shape.

Graphene consists of a flat layer of carbon atoms tightly packed into a two-dimensional honeycomb arrangement.

Because it is so thin, it is also practically transparent. The unusual electronic, mechanical and chemical properties of graphene at the molecular scale promise numerous applications.

Its discoverers, Andre Geim and Konstantin Novoselov from Manchester University, were awarded the Nobel Prize for Physics in 2010.

The technique described by Jong Min Yuk and colleagues might enable scientists to study other physical, chemical, and biological phenomena that take place in liquids on the nanometre scale.

“Their approach opens new domains of research in the physics and chemistry in the fluid phase in general,” said Christian Colliex, from the Universite Paris Sud in France, who was not involved with the research.

In another paper published in this week’s Science magazine, researchers from the US and Spain report that the stress of pressing the tip of an atomic force microscope into a thin film of material can switch the direction of the film’s electric charge.

This phenomenon, called “flexoelectricity”, could be harnessed to improve memory in electronic devices.

It could achieve this by allowing digital bits of information to be written mechanically but read electrically – which would use less power.

The process has been likened to a nanoscale typewriter – mechanically “writing” changes in the direction of electric charge.

 

James J. Williams

James is a professor in Science. His writing skills brought him to BelleNews. He enjoys writing articles for the Science and Technology category. James often finds himself reading about the latest gadgets as the topic is very appealing to him. He likes reading and listening to classical music.

Recent Posts

House Panel Votes to Release Matt Gaetz Ethics Report

The US House Ethics Committee has voted to release its report on former Republican Representative…

4 days ago

ABC News to Pay $15M to Settle Trump Defamation Suit

ABC News has agreed to pay $15 million to President-elect Donald Trump to settle a…

1 week ago

South Korea’s Parliament Impeaches President Yoon Suk Yeol Following Martial Law Scandal

South Korea’s parliament has voted to impeach President Yoon Suk Yeol over his failed attempt…

1 week ago

Syria: Israeli War Planes Carry Out More Than 100 Air Strikes

Israeli war planes have carried out more than 100 air strikes in Syria on December…

2 weeks ago

Donald Trump Threatens 100% Tariff on BRICS Nations

President-elect Donald Trump has threatened to impose 100% tariffs on the BRICS countries if they…

3 weeks ago

Syria Coup: Rebels Take Control of Aleppo

Syrian troops have withdrawn from the city of Aleppo following an offensive by rebels opposed…

3 weeks ago