The technological revolution is reshaping every industry and sector of our lives and business space, from traditional services like taxis and telecoms to cutting-edge fields like mobile technology and manufacturing. Change is happening at an unprecedented pace, and there’s no better time to want to pursue a technology-oriented career.
According to the CISCO Networking Academy, 99% of jobs now require tech proficiency. Yes, you read that correctly: nearly every job demands tech-savvy skills. Whether you’re a cashier in a drive-through, a housekeeper, or a software developer for the government, we all have to work with some form of technology.
Forward Role, a tech recruiting firm, says that as the Internet of Everything (IoE) takes center stage, with an estimated 30 to 55 billion smart devices connected worldwide by 2024, techie roles are rising, promising many job prospects. So, if you’re eager to land an impressive tech position, here are some tips to boost your chances.
According to Indeed, the most in-demand specialized skills in tech right now are artificial intelligence (AI), cybersecurity, cloud computing, software engineering, software development, and project management. If you had to pick from those, we’d advise that you go with cybersecurity. Forbes says that in the first half of 2019 alone, according to researchers, 4 billion records were exposed by data breaches.
KnowledgeHut points out that tech professionals with specialized skills in the cybersecurity domain are sought after globally. In fact, the World Economic Forum predicts America’s cybersecurity job market will grow by 10.09% between 2023 and 2027.
2. Build a Strong Portfolio and Knowledge Base
Create a portfolio showcasing your projects, code samples, and tech-related work. Be intentional about the type of projects you do, especially if you’re freelancing. Take time to explore and build a knowledge base that’ll help you fit into a demanding tech role.
Have you taken the time to learn about the Internet of Things? Do you know that, besides Bitcoin, according to Coin base, the open-source code known as blockchain powers over 6,000 other cryptocurrencies? Or that the tech industry makes up 36% of the world market? Knowledge is power, so power up!
Creating a well-organized and visually appealing portfolio demonstrates your capabilities in solving business programming and tech challenges. Potential employers always want to see your skills in action so they can determine if your experiences are a good fit for their business.
3. Network and Connect
According to BetterUp, building a solid professional network unlocks doors to exciting new opportunities that might otherwise be beyond your reach. Furthermore, fostering meaningful professional relationships might lead someone to personally hand-deliver your resume to the hiring manager, giving you a distinct advantage and increasing your chances of landing your dream job. As you network and meet people in your field, you’ll learn about new opportunities early enough to apply.
To expand your network, attend your city’s tech events and online seminars and conferences. Grab opportunities to talk about your skills and passion to the right people. Please don’t wait for them to initiate the conversations all the time.
Also, utilize professional platforms like LinkedIn to connect with tech professionals and recruiters. Tech Target reports that LinkedIn is a social network for career professionals and businesses, with over 500 million members worldwide. LinkedIn has helped many professionals secure jobs, so learn how to leverage it ASAP.
4. Tailor Your Resume
Sending out numerous generic job applications is counterproductive for many job seekers. Don’t fall into that trap! For starters, you might apply to positions that aren’t a good fit for you. As well, recruiters can quickly identify a cookie-cutter application from a mile away.
It’s more effective to focus solely on job opportunities that align perfectly with your expertise and interests and then invest the time to customize your application accordingly. Tailoring your application showcases your genuine interest in the position and increases the likelihood of making a meaningful connection with potential employers.
There’s no magic pill for automatically landing an impressive tech position; it will take some work, wit, and consistency. Stay dedicated, keep honing your skills, and believe in yourself. You’ve got this!
There are several ways COVID-19 changed the software development industry. Before the COVID-19 pandemic hit, tech was already undergoing rapid, major changes. Indeed, many development firms were reshaping the ecommerce, fintech, and business landscapes through new app features. After the COVID outbreak, their impact completely changed as companies shifted to remote work. As a software development manager, you need to know how the pandemic shaped the tech industry. This way, you can keep up with major development trends and changes in the post-pandemic world. Read on to learn about the most important ways COVID-19 changed the software development industry.
Accelerated Digital Transformation
First, the COVID-19 pandemic accelerated the digital transformation for developers. Indeed, many firms looked to migrate their resources to the cloud. Thus, developers had to modernize legacy applications and refactor their monolithic code into microservices. This way, they could adapt to new user needs faster. In addition, many developers had to step up the transformation for their clients as well. If they didn’t have digital platforms for customers and suppliers, many software developers had to enable these as quickly as possible. As developers continue working post-COVID, they continue to build these digital channels so clients can keep up with new business patterns. Definitely, COVID-19 accelerated the digital transformation in the software development industry.
Adoption Of Advanced Tools
Next, the pandemic pushed many software development teams to adopt advanced tools in their SDLC. For example, many companies installed a Kubernetes Docker Registry by JFrog. With this containerization software, developers could provision their k8s cluster with Helm charts and images to orchestrate their applications. In addition, it provides secure, private provisioning to host local Docker images. With this feature, companies can leverage fine-grained access control as they share packages and images across their organization. Indeed, virtual Docker registries can aggregate local and remote resource to give you a single URL to manage your images. In an age where digital security is priority, this is key to mitigate risk and lower cost. In short, COVID-19 pushed development teams to adopt advanced tools to streamline security and resource management.
Increased Productivity From Remote Work
The pandemic increased software developer productivity from remote work. According to recent data, COVID pushed more than half of workers to shift their focus to the DevOps methodology for increased collaboration and efficiency. Additionally, the pandemic increased progress towards cloud migration by over 50%. By moving data to a cloud computing environment, output went up over 40%. Plus, CRM activity went up by over 150%. Indeed, remote work prevented teams from wasting time from distractions, chatting, and group meetings. Simultaneously, video conferencing and chat platforms allowed employees to stay connected. With this increased productivity, many developers will likely stay remote or adopt a hybrid model in a post-COVID world.
Higher Demand For Services
Moreover, COVID-19 also launched a higher demand for services in the software development industry. Indeed, data shows that software development roles increased by nearly 8% in the early months of the pandemic. Many businesses sought new tools to streamline business operations and maintain product delivery. For example, many companies invested in remote banking, grocery delivery, and medical scheduling applications. Additionally, over 65% of organizations reported spending more on video conferencing software. Indeed, these new resources were key to maintain their customer base and provide services through lockdowns. Undoubtedly, COVID-19 pushed a higher demand for software development services.
More AI And Automation
Furthermore, COVID-19 pushed for more AI and automation in the software development industry. For example, many companies are implementing AI in web chat bots to increase online customer interaction. Simultaneously, AI in the software industry enabled strategic decision making through analytics. Plus, many development teams implemented automated test tools for their quality assurance analysts. Notably, these tools work to minimize human error and promote fast testing in the development process. Certainly, COVID-19 enabled more AI and automation in the software development industry.
There are several important ways COVID-19 changed the software development industry. First, COVID-19 accelerated the digital transformation with cloud migration. Leveraging these cloud-based technologies, businesses can maximize speed, security, and storage efficiency. Next, many companies adopted advanced tools like container registries. With these solutions in place, businesses can capitalize on the power of containerization. In addition, software development increased productivity from remote work. Moreover, COVID also pushed a higher demand for software services. Furthermore, the pandemic also fostered more AI and automation in team pipelines. Consider these points to learn about the most significant ways COVID-19 changed the software development industry.
The
job market is changing constantly with many vocations that were once considered
respectable and career-worthy now all but redundant. Similarly, roles that
didn’t even exist twenty years ago are now mainstream. It is very hard to know
what will work and what won’t in twenty years’ time and for those
school-leavers who are preparing to study and enter the world of the employed
that is very daunting. Nobody wants to study for four or five years only to
discover that the field they were intending to specialise in has been taken
over by robots or AI or is simply completely superfluous. With that in mind,
here are a few roles that look set to dominate for many years to come.
Learn code
Code is another way of talking about computer language, and there are many of these. A great place to start is by learning to code. If you have some coding skills in your draw that will immediately open up opportunities for you. Not necessarily as a coder, because even that is rapidly losing its cachet and speciality. For many coding is now about accessing libraries of previously written code and compiling it together in a new way to create something different. There are also plenty of app developers Australia or computers coders in New Zealand. The market is full of skilled developers, so there are no guarantees that you will find work as a developer. But being able to code and understand a coding language or languages is good as the field of technology is varied and wide. Think of it as being able to speak Chinese… If you are fluent in Mandarin you are not guaranteed a job, but it opens up the world of opportunities in Chinese related business. The same applies to code.
Independence
One of the biggest changes that have been brought on by the advances in technology in recent times is the shrinking of the world and the democratisation of media. Now anyone can have a voice and you can work for people anywhere in the world. The old idea of getting into a car and heading to the office for eight hours before trudging home again is well past its sell-by date. Now it is about freelancing and creating your own brand. Think YouTube channels and Social Media influencers. Start getting used to the idea of working for yourself; of being a digital nomad and start looking for angles that will help you stand out and succeed.
Conservation
The
young generation is far more aware of issues like global warming and the
environment that previous generations ever were. Youngsters like Greta Thunberg
are leading the way with their activism and millions of young people are behind
the idea of taking control of their futures. So, look at studying ecologically
focussed courses. Think organic and ethical and conservation. These are the
types of endeavours that are going to be supported and needed for decades to
come – because the state of the earth is going to get worse still before it
starts to get better.
Machines have been an integral part of our lives for
years now. And now with machine learning and AI, it has become possible for
machines to work independent of human intervention. Progress in this space now allows machines to
carry out tasks as diligently and intelligently as humans do, with high
accuracy, if not completely perfect. We are quite literally trying to build a
brain for machines, and that can be done only if machines are taught to learn
the way we do. No wonder machine learning has found such a huge following in
the world today, both by its creators and the users.
As with any domain, there is always a tussle and debate
around the right way to build a particular software and the programming
language which is the best fit for it. The domain of machine learning is not an
exception either. And while the tide keeps shifting every once in a while,
major support for Python has stayed in place consistently through the years.
Here’s why aMachine learning with Python course is absolutely essential for you if you’re looking to make your mark in the machine learning space and get a job that helps you make it happen.
1.Reusability of code and ease of configuration
Machine learning, in itself, is quite a complex
challenge to begin with. Understanding the logic, recognizing patterns, and
developing code that can help keep it all together is even more difficult than
it might seem at the outset. The last thing any programmer would want is a
language that makes things even more complex than they need to be.
Python comes with a good collection of libraries that
serve a major purpose of code reusability. Not only are these libraries filled
with instructions of how to use them in the best way, but simple tweaks in
their modules can help them to be reused for different functionalities within
the same model. Configuring them is as easy as breaking them down, testing
them, making changes, and rebuilding them, all within a single space. Compare
this with other languages and many programmers struggle with challenges like
multiple structures, syntax differences, and so on.
2.Identifying and correcting errors quickly
We all know that machine learning is not going to be a
simple task. There will be multiple iterations of building the algorithm,
carrying out tests, and verifying results. What could be detrimental in this
aspect is if there’s no way to figure out why the results are incorrect and
trace them back to the code in order to understand the area responsible for the
failure. Even popular languages like R, that boast extensive application
capabilities, don’t make this an easy task, requiring hours and hours spent in
simply detecting a small error.
Contrast that with Python that is extremely handy with
error reporting which is specific and right on point. A few clicks can take you
right to the module that caused the error and allow you to get down to the root
cause in a considerably shorter period of time.
3.Machine learning, and not machine solving
The goal of machine learning is to create logic and
algorithms that help the machine to learn by itself. We are not looking for
results on what the machine is doing and what output it brings out. That enters
the realm of research in evaluating machine performance.
Python helps programmers focus on the core aspect of
machine learning. It is highly reliant on real-time processing and analysis of
data, which allows the machine to make changes in its behaviour. This aspect of
helping a machine gain insight into its own working is deftly achieved by using
Python than any other language.
4.Wider applications that support machine learning
Picking up Python as one of the primary programming
languages to be proficient in has a lot of advantages that go beyond the world
of machine learning, but ultimately feed right back into it. It helps you be
more aware of the different logic principles that govern code functionality and
make you a better programmer. This helps pick up other languages speedily and code
them in an effective manner.
A lot of other resources are also essential in
understanding the nuances of machine learning, and these may make use of
programming components that are independent of the domain. However, most of
these are also built using Python, so knowing the language beforehand can
always help you understand them better.
5.A high demand for Python in major job markets
Currently, the United States is one of the biggest
markets where machine learning developments are at an all-time high. A look at
job portals, makes it evident that many companies are on the lookout for good
Python programmers that understand the nitty-gritty of machine learning and can
develop excellent solutions.
In the coming years, this trend is just going to flow
over to markets all across the world. So even if you don’t have immediate plans
of going to the US and applying for a job, preparing for the inevitable boom in
the sector is always in your benefit.
Learning other languages like SAS or R is a good decision if you have set your mind to enter a specific retail space that makes use of them widely. However, a good Machine learning with Python training course is your best choice for staying in step with the changing times and being future ready.
Since the development of computers or machines,
their competence to enforce various tasks went on growing epidemically. Humans
have advanced the power of computer systems in terms of their disparate working
domains, their proliferating speed, and decreasing size with respect to time.
An arm of Computer Science named Artificial
Intelligence goes after creating computers or machines as brilliant as human
beings.
As we go ahead with the entire career prospective
of Artificial Intelligence, let’s understand briefly about what Artificial
Intelligence is.
A Brief Overview
of Artificial Intelligence
The father of Artificial Intelligence, John McCarthy said, “Artificial Intelligence is the science and engineering that makes intelligent machines, exceptionally intelligent computer programs”.
AI makes a computer, a computer-controlled robot,
or a software think intelligently, the same way an intelligent human would
think.
While capitalizing the competence of the computer
systems, the eagerness of human, lead him to doubt, “Whether a machine thinks
and behave as humans do?”
Hence, the advancement of AI started with the
objective to create similar intelligence in machines that we humans could.
Artificial Intelligence aims to create expert systems. These systems present
intelligent behavior, learn, display, explain, and advice their users. It
implements human intelligence in machines by creating systems that understand,
think, learn, and act like humans.
Career Prospects of Artificial Intelligence
A big core of AI is in the advancement of
computer functions associated with human intelligence, such as reasoning,
learning, and problem-solving.
AI
has been assertive in various fields such as −
Gaming
− It plays an important role in critical games such as chess, poker,
tic-tac-toe, etc., where a machine can think of a large number of possible
positions based on probing knowledge.
Natural
Language Processing − It helps in interacting with the computer that
understands the natural language which humans speak.
Speech
Recognition − Some intelligent systems are able to hear and comprehend the
language in terms of sentences and their meanings while a human talks to it.
They can handle different accents, slangs, background noises, change in human’s
tone due to cough, etc.
Intelligent
Robots − Robots perform tasks which are assigned by humans. They can sense
physical data from the real- world such as light, heat, temperature, movement,
sound, bump, and pressure. They have enough processors, various sensors and
vast memory, to display intelligence. Also, they are able to learn from their
mistakes and they can adapt to the new environment.
Domains which target Artificial Intelligence are
as follows:
Medicine: includes identification
of medical images, diagnosis, expert systems to aid GPs, monitors, and controls
in ICU, designing of prosthetics, and
drug designing.
Robotics: includes vision, motor
control, learning, planning, linguistic communication, cooperative behavior.
Engineering: identification of
fault diagnosis, intelligent control systems, intelligent manufacturing
systems, intelligent design aids, integrated systems for sales, design,
production, maintenance, expert configuration tools (e.g. ensuring sales staff
don’t sell a system that won’t work.
Space: It controls space vehicles
and autonomous robots too far from earth to be directly manipulated by humans
on earth, because of transmission delays.
Marketing: AI is being used to
develop more targeted, relevant, and timely marketing programmes to enhance
customer attrition rates. Examples of typical jobs held by AI professionals
include:
1.Software analysts and developers.
2.Computer Scientists and computer engineers.
3.Algorithm specialists.
4.Research scientists and engineering
consultants.
5.Surgical technicians working with robotic
tools.
6.Medical health professionals working with
artificial limbs, prosthetics, hearing aids, and vision restoration devices.
7.Military and aviation electricians working with
flight simulators, drones, and armaments.
Salary
Scale: The average salary of an Artificial
Intelligence Engineer is approximately $93,625 per year depending upon the
domain you choose.
Advance information technologies and the onset of
machines enhanced by Artificial I
Intelligence (AI) have already influenced the
world of work in the 21st century. Computers, algorithms, and software cut down
everyday tasks, and it is absurd to imagine how most of our life could be
managed without them. Nonetheless, is it also futile to imagine how most
process steps could be managed without human effort. If they are then
Artificial Intelligence will be an assured short movement in IT industry?
To learn and master in Artificial Intelligence, you can go through various AI Certification Courses available online.
This website has updated its privacy policy in compliance with EU GDPR 2016/679. Please read this to review the updates about which personal data we collect on our site. By continuing to use this site, you are agreeing to our updated policy. AcceptRejectRead More
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.