Categories: Science & Technology

Most realistic robot legs developed by University of Arizona

The most biologically-accurate robotic legs yet has been developed by US experts.

Writing in the Journal of Neural Engineering, US experts said the work could help understanding of how babies learn to walk – and spinal-injury treatment.

They created a version of the message system that generates the rhythmic muscle signals that control walking.

The team, from the University of Arizona, were able to replicate the central pattern generator (CPG) – a nerve cell (neuronal) network in the lumbar region of the spinal cord that generates rhythmic muscle signals.

The most biologically-accurate robotic legs yet has been developed by US experts

The CPG produces, and then controls, these signals by gathering information from different parts of the body involved in walking, responding to the environment.

This is what allows people to walk without thinking about it.

The simplest form of a CPG is called a half-centre, which consists of just two neurons that fire signals alternatively, producing a rhythm, as well as sensors that deliver information, such as when a leg meets a surface, back to the half-centre.

The University of Arizona team suggests babies start off with this simplistic set-up – and then over time develop a more complex walking pattern.

They say this could explain why babies put onto a treadmill have been seen to take steps – even before they have learnt to walk.

Writing in the journal, the team says: “This robot represents a complete physical, or <<neurorobotic>> model of the system, demonstrating the usefulness of this type of robotics research for investigating the neuropsychological processes underlying walking in humans and animals.”

Dr. Theresa Klein, who worked on the study, said: “Interestingly, we were able to produce a walking gait, without balance, which mimicked human walking with only a simple half-centre controlling the hips and a set of reflex responses controlling the lower limb.

“This underlying network may also form the core of the CPG and may explain how people with spinal cord injuries can regain walking ability if properly stimulated in the months after the injury.”

 

James J. Williams

James is a professor in Science. His writing skills brought him to BelleNews. He enjoys writing articles for the Science and Technology category. James often finds himself reading about the latest gadgets as the topic is very appealing to him. He likes reading and listening to classical music.

Recent Posts

Deadly Tornadoes Hit Oklahoma Leaving Thousands Without Power and Causing Serious Damage

At least five people, including a four-month-old baby, have been killed after dozens of tornadoes…

1 day ago

Harvey Weinstein in Hospital After Conviction Overturned

Harvey Weinstein has been hospitalized just days after his 2020 rape conviction in New York…

3 days ago

Hamas Releases Video of Two Hostages, Including a Kidnapped US Citizen

Hamas has published a video showing the first proof of life of US and Israeli…

3 days ago

Trump Trial: Prosecutors and Attorneys Deliver Opening Statements

Prosecutors and Donald Trump’s attorneys delivered opening statements and the first witness was called on…

1 week ago

House Passes $95 Billion Package to Provide Aid to Ukraine, Israel, and Taiwan

The House of Representatives has finally approved $61 billion in new US military aid for…

1 week ago

The Current Real Estate Landscape in the United States

The real estate market in the United States has always been a gauge for economic…

2 weeks ago