NOTT-202 metal-organic framework can selectively soak up CO2 from the atmosphere

British researchers have developed a porous material that can preferentially soak up CO2 from the atmosphere.

NOTT-202 is a “metal-organic framework” that works like a sponge, absorbing a number of gases at high pressures.

But as the pressure is reduced, CO2 is retained as other gases are released.

The development, reported in Nature Materials, holds promise for carbon capture and storage, or even for removing CO2 from the exhaust gases of power plants and factories.

Metal-organic frameworks have been considered promising structures to trap gases for a number of years. They are so named because they comprise atoms of a metallic element at their core, surrounded by scaffolds of longer, carbon-containing chains.

These complex molecules can be made to join together in frameworks that leave gaps suitable for capturing gases.

NOTT-202 is a "metal-organic framework" that works like a sponge, absorbing a number of gases at high pressures

However, until now, such frameworks have been good primarily at gathering any gas passing through them; those that were selective for CO2 have proven to have a low capacity for storing the gas.

“Increasing the selectivity for CO2 in the presence of gaseous mixtures represents a major challenge if these systems are to find practical applications under dynamic conditions,” the authors wrote.

The research started at the universities of Nottingham and Newcastle, where scientists discovered a chemical system that seemed to solve this problem of selectively storing a significant amount of CO2.

But to be sure of just what they had, they collaborated with a team at the Diamond Light Source in Oxfordshire and the Science and Technology Facilities Council’s Daresbury Laboratory to get a microscopic look at what they had created.

Using X-ray diffraction and detailed computer models, the researchers found that NOTT-202 is made up of two different frameworks that slot together incompletely, leaving “nanopore” gaps particularly suited to gathering up CO2.

This two-part structure, the researchers claim, is an entirely new class of porous material.

As such, research into just how similarly paired frameworks can be created may help researchers find a range of materials suited to soaking up specific gases.

 

James J. Williams

James is a professor in Science. His writing skills brought him to BelleNews. He enjoys writing articles for the Science and Technology category. James often finds himself reading about the latest gadgets as the topic is very appealing to him. He likes reading and listening to classical music.

Recent Posts

UCLA Protests: Police Clash with Protesters as Officers Clear Pro-Palestinian Encampment

President Joe Biden has urged pro-Palestinian protesters on university campuses to uphold the rule of…

5 hours ago

Mufasa: Blue Ivy Carter Joins Voice Cast of The Lion King Prequel

Blue Ivy Carter has joined the voice cast of The Lion King prequel Mufasa: The…

5 hours ago

Deadly Tornadoes Hit Oklahoma Leaving Thousands Without Power and Causing Serious Damage

At least five people, including a four-month-old baby, have been killed after dozens of tornadoes…

3 days ago

Harvey Weinstein in Hospital After Conviction Overturned

Harvey Weinstein has been hospitalized just days after his 2020 rape conviction in New York…

5 days ago

Hamas Releases Video of Two Hostages, Including a Kidnapped US Citizen

Hamas has published a video showing the first proof of life of US and Israeli…

5 days ago

Trump Trial: Prosecutors and Attorneys Deliver Opening Statements

Prosecutors and Donald Trump’s attorneys delivered opening statements and the first witness was called on…

1 week ago